MORE NOTES ON HD-AUDIO
DRIVER

MORE NOTES ON HD-AUDIO DRIVER

MORE NOTES ON HD-AUDIO
DRIVER

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

MORE NOTES ON HD-AUDIO
DRIVER

Contents

1 GENERAL

2 HD-AUDIO CONTROLLER
2.1 DMA-Position Problem
2.2 Codec-Probing Problem
2.3 Interrupt Handling L L e e

3 HD-AUDIO CODEC
3.1 Model Option o e e e e e e e e e
3.2 Speaker and Headphone Output e e e e
3.3 Capture Problems e e e
3.4 Direct Debugging L e e e

4 OTHER ISSUES
4.1 Kernel Configuration L e
4.2 Codec Proc-File e
4.3 HD-Audio Reconfiguration e
44 Early Patching e
4.5 PoWer-SaviNg e e e e e e e e e e
4.6 Development Tree L . e e e e e e

477 SendingaBugReport L e e

5 DEBUG TOOLS
5.1 alsa-info . . .
52 hda-verb
5.3 hda-analyzer. L e e e e e e
54 Codecgraph L e
5.5 hda-emu

MORE NOTES ON HD-AUDIO
DRIVER

1 GENERAL

HD-audio is the new standard on-board audio component on modern PCs after AC97. Although Linux has been supporting
HD-audio since long time ago, there are often problems with new machines. A part of the problem is broken BIOS, and the
rest is the driver implementation. This document explains the brief trouble-shooting and debugging methods for the HD-audio
hardware.

The HD-audio component consists of two parts: the controller chip and the codec chips on the HD-audio bus. Linux provides a
single driver for all controllers, snd-hda-intel. Although the driver name contains a word of a well-known hardware vendor, it’s
not specific to it but for all controller chips by other companies. Since the HD-audio controllers are supposed to be compatible,
the single snd-hda-driver should work in most cases. But, not surprisingly, there are known bugs and issues specific to each
controller type. The snd-hda-intel driver has a bunch of workarounds for these as described below.

A controller may have multiple codecs. Usually you have one audio codec and optionally one modem codec. In theory, there
might be multiple audio codecs, e.g. for analog and digital outputs, and the driver might not work properly because of conflict of
mixer elements. This should be fixed in future if such hardware really exists.

The snd-hda-intel driver has several different codec parsers depending on the codec. It has a generic parser as a fallback, but this
functionality is fairly limited until now. Instead of the generic parser, usually the codec-specific parser (coded in patch_*.c) is
used for the codec-specific implementations. The details about the codec-specific problems are explained in the later sections.

If you are interested in the deep debugging of HD-audio, read the HD-audio specification at first. The specification is found on
Intel’s web page, for example:

* http://www.intel.com/standards/hdaudio/

2 HD-AUDIO CONTROLLER

2.1 DMA-Position Problem

The most common problem of the controller is the inaccurate DMA pointer reporting. The DMA pointer for playback and
capture can be read in two ways, either via a LPIB register or via a position-buffer map. As default the driver tries to read from
the i0-mapped position-buffer, and falls back to LPIB if the position-buffer appears dead. However, this detection isn’t perfect
on some devices. In such a case, you can change the default method via position_fix option.

position_fix=1 means touse LPIB method explicitly. position_fix=2 means to use the position-buffer. 0 is the default
value, the automatic check and fallback to LPIB as described in the above. If you get a problem of repeated sounds, this option
might help.

In addition to that, every controller is known to be broken regarding the wake-up timing. It wakes up a few samples before
actually processing the data on the buffer. This caused a lot of problems, for example, with ALSA dmix or JACK. Since 2.6.27
kernel, the driver puts an artificial delay to the wake up timing. This delay is controlled via bd1_pos_adj option.

When bd1_pos_adj is a negative value (as default), it’s assigned to an appropriate value depending on the controller chip. For
Intel chips, it’d be 1 while it’d be 32 for others. Usually this works. Only in case it doesn’t work and you get warning messages,
you should change this parameter to other values.

2.2 Codec-Probing Problem

A less often but a more severe problem is the codec probing. When BIOS reports the available codec slots wrongly, the driver
gets confused and tries to access the non-existing codec slot. This often results in the total screw-up, and destructs the further
communication with the codec chips. The symptom appears usually as error messages like:

hda_intel: azx_get_response timeout, switching to polling mode:
last cmd=0x12345678

hda_intel: azx_get_response timeout, switching to single_cmd mode:
last cmd=0x12345678

http://www.intel.com/standards/hdaudio/

MORE NOTES ON HD-AUDIO

DRIVER 5/9

The first line is a warning, and this is usually relatively harmless. It means that the codec response isn’t notified via an IRQ. The
driver uses explicit polling method to read the response. It gives very slight CPU overhead, but you’d unlikely notice it.

The second line is, however, a fatal error. If this happens, usually it means that something is really wrong. Most likely you are
accessing a non-existing codec slot.

Thus, if the second error message appears, try to narrow the probed codec slots via probe_mask option. It’s a bitmask, and
each bit corresponds to the codec slot. For example, to probe only the first slot, pass probe_mask=1. For the first and the third
slots, pass probe_mask=5 (where 5 =1 14), and so on.

Since 2.6.29 kernel, the driver has a more robust probing method, so this error might happen rarely, though.

On a machine with a broken BIOS, sometimes you need to force the driver to probe the codec slots the hardware doesn’t report
for use. In such a case, turn the bit 8 (0x100) of probe_mask option on. Then the rest 8 bits are passed as the codec slots
to probe unconditionally. For example, probe_mask=0x103 will force to probe the codec slots 0 and 1 no matter what the
hardware reports.

2.3 Interrupt Handling

In rare but some cases, the interrupt isn’t properly handled as default. You would notice this by the DMA transfer error reported
by ALSA PCM core, for example. Using MSI might help in such a case. Pass enable_msi=1 option for enabling MSI.

3 HD-AUDIO CODEC

3.1 Model Option

The most common problem regarding the HD-audio driver is the unsupported codec features or the mismatched device configura-
tion. Most of codec-specific code has several preset models, either to override the BIOS setup or to provide more comprehensive
features.

The driver checks PCI SSID and looks through the static configuration table until any matching entry is found. If you have a new
machine, you may see a message like below:

hda_codec: ALC880: BIOS auto-probing.

Meanwhile, in the earlier versions, you would see a message like:

hda_codec: Unknown model for ALC880, trying auto-probe from BIOS...

Even if you see such a message, DON’T PANIC. Take a deep breath and keep your towel. First of all, it’s an informational
message, no warning, no error. This means that the PCI SSID of your device isn’t listed in the known preset model (white-)list.
But, this doesn’t mean that the driver is broken. Many codec-drivers provide the automatic configuration mechanism based on
the BIOS setup.

The HD-audio codec has usually "pin" widgets, and BIOS sets the default configuration of each pin, which indicates the location,
the connection type, the jack color, etc. The HD-audio driver can guess the right connection judging from these default config-
uration values. However — some codec-support codes, such as patch_analog.c, don’t support the automatic probing (yet as of
2.6.28). And, BIOS is often, yes, pretty often broken. It sets up wrong values and screws up the driver.

The preset model is provided basically to overcome such a situation. When the matching preset model is found in the white-list,
the driver assumes the static configuration of that preset and builds the mixer elements and PCM streams based on the static
information. Thus, if you have a newer machine with a slightly different PCI SSID from the existing one, you may have a good
chance to re-use the same model. You can pass the model option to specify the preset model instead of PCI SSID look-up.

What mode 1 option values are available depends on the codec chip. Check your codec chip from the codec proc file (see "Codec
Proc-File" section below). It will show the vendor/product name of your codec chip. Then, see Documentation/sound/alsa/HD-
Audio-Models.txt file, the section of HD-audio driver. You can find a list of codecs and mode 1 options belonging to each codec.
For example, for Realtek ALC262 codec chip, pass model=ultra for devices that are compatible with Samsung Q1 Ultra.

MORE NOTES ON HD-AUDIO

DRIVER 3/9

Thus, the first thing you can do for any brand-new, unsupported and non-working HD-audio hardware is to check HD-audio
codec and several different mode 1 option values. If you have any luck, some of them might suit with your device well.

Some codecs such as ALC880 have a special model option model=test. This configures the driver to provide as many mixer
controls as possible for every single pin feature except for the unsolicited events (and maybe some other specials). Adjust each
mixer element and try the I/O in the way of trial-and-error until figuring out the whole I/O pin mappings.

Note that model=generic has a special meaning. It means to use the generic parser regardless of the codec. Usually the
codec-specific parser is much better than the generic parser (as now). Thus this option is more about the debugging purpose.

3.2 Speaker and Headphone Output

One of the most frequent (and obvious) bugs with HD-audio is the silent output from either or both of a built-in speaker and a
headphone jack. In general, you should try a headphone output at first. A speaker output often requires more additional controls
like the external amplifier bits. Thus a headphone output has a slightly better chance.

Before making a bug report, double-check whether the mixer is set up correctly. The recent version of snd-hda-intel driver
provides mostly "Master" volume control as well as "Front" volume (where Front indicates the front-channels). In addition, there
can be individual "Headphone" and "Speaker" controls.

Ditto for the speaker output. There can be "External Amplifier" switch on some codecs. Turn on this if present.

Another related problem is the automatic mute of speaker output by headphone plugging. This feature is implemented in most
cases, but not on every preset model or codec-support code.

In anyway, try a different model option if you have such a problem. Some other models may match better and give you more
matching functionality. If none of the available models works, send a bug report. See the bug report section for details.

If you are masochistic enough to debug the driver problem, note the following:

* The speaker (and the headphone, too) output often requires the external amplifier. This can be set usually via EAPD verb or a
certain GPIO. If the codec pin supports EAPD, you have a better chance via SET_EAPD_BTL verb (0x70c). On others, GPIO
pin (mostly it’s either GPIOO0 or GPIO1) may turn on/off EAPD.

» Some Realtek codecs require special vendor-specific coefficients to turn on the amplifier. See patch_realtek.c.
* IDT codecs may have extra power-enable/disable controls on each analog pin. See patch_sigmatel.c.

* Very rare but some devices don’t accept the pin-detection verb until triggered. Issuing GET_PIN_SENSE verb (0xf09) may
result in the codec-communication stall. Some examples are found in patch_realtek.c.

3.3 Capture Problems

The capture problems are often because of missing setups of mixers. Thus, before submitting a bug report, make sure that you
set up the mixer correctly. For example, both "Capture Volume" and "Capture Switch" have to be set properly in addition to the
right "Capture Source" or "Input Source" selection. Some devices have "Mic Boost" volume or switch.

When the PCM device is opened via "default” PCM (without pulse-audio plugin), you’ll likely have "Digital Capture Volume"
control as well. This is provided for the extra gain/attenuation of the signal in software, especially for the inputs without the
hardware volume control such as digital microphones. Unless really needed, this should be set to exactly 50%, corresponding to
0dB — neither extra gain nor attenuation. When you use "hw" PCM, i.e., a raw access PCM, this control will have no influence,
though.

It’s known that some codecs / devices have fairly bad analog circuits, and the recorded sound contains a certain DC-offset. This
is no bug of the driver.

Most of modern laptops have no analog CD-input connection. Thus, the recording from CD input won’t work in many cases
although the driver provides it as the capture source. Use CDDA instead.

The automatic switching of the built-in and external mic per plugging is implemented on some codec models but not on every
model. Partly because of my laziness but mostly lack of testers. Feel free to submit the improvement patch to the author.

MORE NOTES ON HD-AUDIO

DRIVER 4/9

3.4 Direct Debugging

If no model option gives you a better result, and you are a tough guy to fight against evil, try debugging via hitting the raw
HD-audio codec verbs to the device. Some tools are available: hda-emu and hda-analyzer. The detailed description is found in
the sections below. You’d need to enable hwdep for using these tools. See "Kernel Configuration" section.

4 OTHER ISSUES

4.1 Kernel Configuration

In general, I recommend you to enable the sound debug option, CONFIG_SND_DEBUG=y, no matter whether you are debugging
or not. This enables snd_printd() macro and others, and you’ll get additional kernel messages at probing.

In addition, you can enable CONFIG_SND_DEBUG_VERBOSE=y. But this will give you far more messages. Thus turn this on
only when you are sure to want it.

Don’t forget to turn on the appropriate CONFIG_SND_HDA_CODEC_* options. Note that each of them corresponds to the
codec chip, not the controller chip. Thus, even if Ispci shows the Nvidia controller, you may need to choose the option for other
vendors. If you are unsure, just select all yes.

CONFIG_SND_HDA_HWDEP is a useful option for debugging the driver. When this is enabled, the driver creates hardware-
dependent devices (one per each codec), and you have a raw access to the device via these device files. For example, hwC0D2
will be created for the codec slot #2 of the first card (#0). For debug-tools such as hda-verb and hda-analyzer, the hwdep device
has to be enabled. Thus, it’d be better to turn this on always.

CONFIG_SND_HDA_RECONFIG is a new option, and this depends on the hwdep option above. When enabled, you’ll have
some sysfs files under the corresponding hwdep directory. See "HD-audio reconfiguration” section below.

CONFIG_SND_HDA_POWER_SAVE option enables the power-saving feature. See "Power-saving" section below.

4.2 Codec Proc-File

The codec proc-file is a treasure-chest for debugging HD-audio. It shows most of useful information of each codec widget.

The proc file is located in /proc/asound/card*/codec#*, one file per each codec slot. You can know the codec vendor, product id
and names, the type of each widget, capabilities and so on. This file, however, doesn’t show the jack sensing state, so far. This is
because the jack-sensing might be depending on the trigger state.

This file will be picked up by the debug tools, and also it can be fed to the emulator as the primary codec information. See the
debug tools section below.

This proc file can be also used to check whether the generic parser is used. When the generic parser is used, the vendor/product
ID name will appear as "Realtek ID 0262", instead of "Realtek ALC262".

4.3 HD-Audio Reconfiguration

This is an experimental feature to allow you re-configure the HD-audio codec dynamically without reloading the driver. The
following sysfs files are available under each codec-hwdep device directory (e.g. /sys/class/sound/hwC0DO):

vendor_id
Shows the 32bit codec vendor-id hex number. You can change the vendor-id value by writing to this file.

subsystem_id
Shows the 32bit codec subsystem-id hex number. You can change the subsystem-id value by writing to this file.

revision_id
Shows the 32bit codec revision-id hex number. You can change the revision-id value by writing to this file.

MORE NOTES ON HD-AUDIO
DRIVER 5/9

afg
Shows the AFG ID. This is read-only.

mfg
Shows the MFG ID. This is read-only.

name
Shows the codec name string. Can be changed by writing to this file.

modelname
Shows the currently set model option. Can be changed by writing to this file.

init_verbs
The extra verbs to execute at initialization. You can add a verb by writing to this file. Pass three numbers: nid, verb and
parameter (separated with a space).

hints
Shows / stores hint strings for codec parsers for any use. Its format is key = value. For example, passing hp_detect
= yes to IDT/STAC codec parser will result in the disablement of the headphone detection.

init_pin_configs
Shows the initial pin default config values set by BIOS.

driver_pin_configs
Shows the pin default values set by the codec parser explicitly. This doesn’t show all pin values but only the changed
values by the parser. That is, if the parser doesn’t change the pin default config values by itself, this will contain nothing.

user_pin_configs
Shows the pin default config values to override the BIOS setup. Writing this (with two numbers, NID and value) appends
the new value. The given will be used instead of the initial BIOS value at the next reconfiguration time. Note that this
config will override even the driver pin configs, too.

reconfig
Triggers the codec re-configuration. When any value is written to this file, the driver re-initialize and parses the codec tree
again. All the changes done by the sysfs entries above are taken into account.

clear
Resets the codec, removes the mixer elements and PCM stuff of the specified codec, and clear all init verbs and hints.

For example, when you want to change the pin default configuration value of the pin widget 0x14 to 0x9993013f, and let the
driver re-configure based on that state, run like below:

echo 0x14 0x9993013f > /sys/class/sound/hwCOD0/user_pin_configs
echo 1 > /sys/class/sound/hwCOD0O/reconfig

4.4 Early Patching

When CONFIG_SND_HDA_PATCH_LOADER=y is set, you can pass a "patch" as a firmware file for modifying the HD-audio
setup before initializing the codec. This can work basically like the reconfiguration via sysfs in the above, but it does it before
the first codec configuration.

A patch file is a plain text file which looks like below:

[codec]
0x12345678 Oxabcdl234 2

[model]
auto

[pincfg]
0x12 0x411111f£0

MORE NOTES ON HD-AUDIO

DRIVER 6/9

[verb]
0x20 0x500 0x03
0x20 0x400 Oxff

[hint]
hp_detect = yes

The file needs to have a line [codec]. The next line should contain three numbers indicating the codec vendor-id (0x12345678
in the example), the codec subsystem-id (Oxabcd1234) and the address (2) of the codec. The rest patch entries are applied to this
specified codec until another codec entry is given.

The [model] line allows to change the model name of the each codec. In the example above, it will be changed to model=auto.
Note that this overrides the module option.

After the [pincfg] line, the contents are parsed as the initial default pin-configurations just like user_pin_configs sysfs
above. The values can be shown in user_pin_configs sysfs file, too.

Similarly, the lines after [verb] are parsed as init_verbs sysfs entries, and the lines after [hint] are parsed as hints
sysfs entries, respectively.

The hd-audio driver reads the file via request_firmware(). Thus, a patch file has to be located on the appropriate firmware path,
typically, /lib/firmware. For example, when you pass the option patch=hda-init . fw, the file /lib/firmware/hda-init-fw must
be present.

The patch module option is specific to each card instance, and you need to give one file name for each instance, separated by
commas. For example, if you have two cards, one for an on-board analog and one for an HDMI video board, you may pass patch
option like below:

options snd-hda-intel patch=on-board-patch,hdmi-patch

4.5 Power-Saving

The power-saving is a kind of auto-suspend of the device. When the device is inactive for a certain time, the device is automat-
ically turned off to save the power. The time to go down is specified via power_save module option, and this option can be
changed dynamically via sysfs.

The power-saving won’t work when the analog loopback is enabled on some codecs. Make sure that you mute all unneeded
signal routes when you want the power-saving.

The power-saving feature might cause audible click noises at each power-down/up depending on the device. Some of them
might be solvable, but some are hard, I'm afraid. Some distros such as openSUSE enables the power-saving feature au-
tomatically when the power cable is unplugged. Thus, if you hear noises, suspect first the power-saving. See /sys/mod-
ule/snd_hda_intel/parameters/power_save to check the current value. If it’s non-zero, the feature is turned on.

4.6 Development Tree
The latest development codes for HD-audio are found on sound git tree:
* git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6.git

The master branch or for-next branches can be used as the main development branches in general while the HD-audio specific
patches are committed in topic/hda branch.

If you are using the latest Linus tree, it’d be better to pull the above GIT tree onto it. If you are using the older kernels, an easy
way to try the latest ALSA code is to build from the snapshot tarball. There are daily tarballs and the latest snapshot tarball.
All can be built just like normal alsa-driver release packages, that is, installed via the usual spells: configure, make and make
install(-modules). See INSTALL in the package. The snapshot tarballs are found at:

* ftp://ftp.kernel.org/pub/linux/kernel/people/tiwai/snapshot/

ftp://ftp.kernel.org/pub/linux/kernel/people/tiwai/snapshot/

MORE NOTES ON HD-AUDIO

DRIVER 779

4.7 Sending a Bug Report

If any model or module options don’t work for your device, it’s time to send a bug report to the developers. Give the following
in your bug report:

* Hardware vendor, product and model names
* Kernel version (and ALSA-driver version if you built externally)

* alsa-info. sh output; run with ——no-upload option. See the section below about alsa-info

If it’s a regression, at best, send alsa-info outputs of both working and non-working kernels. This is really helpful because we
can compare the codec registers directly.

Send a bug report either the followings:

kernel-bugzilla
http://bugme.linux-foundation.org/

alsa-devel ML
alsa-devel @alsa-project.org

5 DEBUG TOOLS

This section describes some tools available for debugging HD-audio problems.

5.1 alsa-info
The script alsa—-info. sh is a very useful tool to gather the audio device information. You can fetch the latest version from:
* http://www.alsa-project.org/alsa-info.sh

Run this script as root, and it will gather the important information such as the module lists, module parameters, proc file contents
including the codec proc files, mixer outputs and the control elements. As default, it will store the information onto a web server
on alsa-project.org. But, if you send a bug report, it’d be better to run with -—no-upload option, and attach the generated file.

There are some other useful options. See ——he 1p option output for details.

When a probe error occurs or when the driver obviously assigns a mismatched model, it’d be helpful to load the driver with
probe_only=1 option (at best after the cold reboot) and run alsa-info at this state. With this option, the driver won’t configure
the mixer and PCM but just tries to probe the codec slot. After probing, the proc file is available, so you can get the raw codec
information before modified by the driver. Of course, the driver isn’t usable with probe_only=1. But you can continue the
configuration via hwdep sysfs file if hda-reconfig option is enabled.

5.2 hda-verb

hda-verb is a tiny program that allows you to access the HD-audio codec directly. You can execute a raw HD-audio codec verb
with this. This program accesses the hwdep device, thus you need to enable the kernel config CONFIG_SND_HDA_HWDEP=y
beforehand.

The hda-verb program takes four arguments: the hwdep device file, the widget NID, the verb and the parameter. When you
access to the codec on the slot 2 of the card 0, pass /dev/snd/hwCO0D?2 to the first argument, typically. (However, the real path
name depends on the system.)

The second parameter is the widget number-id to access. The third parameter can be either a hex/digit number or a string
corresponding to a verb. Similarly, the last parameter is the value to write, or can be a string for the parameter type.

http://bugme.linux-foundation.org/
mailto:alsa-devel@alsa-project.org
http://www.alsa-project.org/alsa-info.sh

MORE NOTES ON HD-AUDIO

DRIVER 8/9

% hda-verb /dev/snd/hwC0DO0 0x12 0x701 2
nid = 0x12, verb = 0x701, param = 0x2
value = 0x0

% hda-verb /dev/snd/hwCOD0 0x0 PARAMETERS VENDOR_ID
nid = 0x0, verb = 0xf00, param = 0x0
value = 0x10ec0262

% hda-verb /dev/snd/hwC0ODO 2 set_a 0xb080
nid = 0x2, verb = 0x300, param = 0xb080
value = 0x0

Although you can issue any verbs with this program, the driver state won’t be always updated. For example, the volume values
are usually cached in the driver, and thus changing the widget amp value directly via hda-verb won’t change the mixer value.

The hda-verb program is found in the ftp directory:

* ftp://ftp.kernel.org/pub/linux/kernel/people/tiwai/misc/

Also a git repository is available:

* git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/hda-verb.git

See README file in the tarball for more details about hda-verb program.

5.3 hda-analyzer

hda-analyzer provides a graphical interface to access the raw HD-audio control, based on pyGTK2 binding. It’s a more powerful
version of hda-verb. The program gives you an easy-to-use GUI stuff for showing the widget information and adjusting the amp
values, as well as the proc-compatible output.

The hda-analyzer is a part of alsa.git repository in alsa-project.org:

* http://git.alsa-project.org/?p=alsa.git;a=tree;f=hda-analyzer

5.4 Codecgraph

Codecgraph is a utility program to generate a graph and visualizes the codec-node connection of a codec chip. It’s especially
useful when you analyze or debug a codec without a proper datasheet. The program parses the given codec proc file and converts
to SVG via graphiz program.

The tarball and GIT trees are found in the web page at:

* http://helllabs.org/codecgraph/

5.5 hda-emu

hda-emu is an HD-audio emulator. The main purpose of this program is to debug an HD-audio codec without the real hardware.
Thus, it doesn’t emulate the behavior with the real audio I/O, but it just dumps the codec register changes and the ALSA-driver
internal changes at probing and operating the HD-audio driver.

The program requires a codec proc-file to simulate. Get a proc file for the target codec beforehand, or pick up an example codec
from the codec proc collections in the tarball. Then, run the program with the proc file, and the hda-emu program will start
parsing the codec file and simulates the HD-audio driver:

ftp://ftp.kernel.org/pub/linux/kernel/people/tiwai/misc/
http://git.alsa-project.org/?p=alsa.git;a=tree;f=hda-analyzer
http://helllabs.org/codecgraph/

MORE NOTES ON HD-AUDIO

DRIVER 9/9

% hda-emu codecs/stac9200-dell-d820-laptop

Parsing..

hda_codec: Unknown model for STAC9200, using BIOS defaults
hda_codec: pin nid 08 bios pin config 40c003fa

The program gives you only a very dumb command-line interface. You can get a proc-file dump at the current state, get a list of
control (mixer) elements, set/get the control element value, simulate the PCM operation, the jack plugging simulation, etc.

The package is found in:

* ftp://ftp.kernel.org/pub/linux/kernel/people/tiwai/misc/

A git repository is available:

* git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/hda-emu.git

See README file in the tarball for more details about hda-emu program.

ftp://ftp.kernel.org/pub/linux/kernel/people/tiwai/misc/

	GENERAL
	HD-AUDIO CONTROLLER
	DMA-Position Problem
	Codec-Probing Problem
	Interrupt Handling

	HD-AUDIO CODEC
	Model Option
	Speaker and Headphone Output
	Capture Problems
	Direct Debugging

	OTHER ISSUES
	Kernel Configuration
	Codec Proc-File
	HD-Audio Reconfiguration
	Early Patching
	Power-Saving
	Development Tree
	Sending a Bug Report

	DEBUG TOOLS
	alsa-info
	hda-verb
	hda-analyzer
	Codecgraph
	hda-emu

