Scaling the Linux VFS

Nick Piggin
SuSE Labs, Novell Inc.

October 16, 2009

0-0

Outline
| will cover the following areas:
e Introduce each of the scalability bottlenecks
e Describe common operations they protect
e Qutline my approach to improving synchronisation

e Report progress, results, problems, future work

Goal
e Improve scalability of common vfs operations;
e with minimal impact on single threaded performance;
e and without an overly complex design.

e Single-sb scalability.

Scalability basics

Scalability problem when there is contention for shared

resources.

Seen in software — eg. locks, where only one code path may

proceed.

Or hardware — eg. cachelines, where only one CPU may modify

a line.
Must avoid exclusive locks and writing to shared variables,

achieved by changing locking techniques and/or data structures.

VFS overview
Virtual FileSystem, or Virtual Filesystem Switch
Entry point for filesystem operations (eg. syscalls)
Delegates operations to appropriate mounted filesystems
Caches things to reduce or eliminate fs responsibility

Provides a library of functions to be used by fs

VFS overview 2
Every mounted filesystem has a struct super_block.

May be mounted more than once, each mount point has a

struct v f smount.
File data is manipulated with struct inode, also a cache.

Directory entry layout manipulated with struct dentry, also a

cache.

Complex and inter-related data structures.

The major problems
o files_lock
e vfsmount_lock
e mnit_count
e dcache_lock
e inode_lock
e Several other write-often data (eg. counters)

e d_lock on common dentries

files_lock
Every open file is put on a per-superblock list.
Global files_lock spinlock protects access to this list.
Each open(2) and close(2) syscall takes this lock.

Global limit on open(2) and close(2) scalability.

Scaling files_lock
Slowpath reading the list is very rare, fastpath is updates.
Modifying a single object (the list head) cannot be scalable:
must reduce number of modifications (eg. batching),
or split modifications to multiple objects.
| use per-CPU lists, protected by per-CPU locks.

Potential cross-CPU file removal issue.

v f smount_lock
Every mounted filesystem
Largely, protects reading and writing mount hash.

Path lookup of directory with fs mounted result in a mount

lookup.

Mount lookup searches the vismount hash for given mount

point.
Mounting, unmounting filesystems modifies the vismount hash.

Global limit on path lookups over mount points.

Scaling v f smount_lock
Fastpath is lookups, slowpaths are updates
RCU not trivial, we must keep lookups away while unmounting,
but per-vismount lock defeats single-sb scalability,
and synchronize_rcu() is just too slow even for umount.
Use per-cpu locks again, this time optimised for reading

“orlock”, readers take a per-cpu lock, writers take all locks

10

mnt_count
e A refcount on vismount, not quite a simple refcount.

e Used importantly in open(2), close(2), and path walk over
mounts.

e Per-mount limit on open(2) and close(2) scalability.

11

Scaling mnt_count

Fastpath is get/put (increment and decrement-and-test

refcount).

“out” must check count == 0, making per-CPU counter hard.
However count == 0 is always false when vfsmount is
attached.

So only check when not mounted (rare case), otherwise just

decrement.

Then per-CPU counters can be used, with per-CPU

v f smount_lock.

12

dcache_lock
Most dcache operations require dcache_lock.
Name lookup is an exception, converted to RCU in 2.5.
dput last reference (common in open(2)/close(2) lifecycle).
Any namespace modification (file create, delete, rename).
Any uncached namespace population (uncached path lookup).
dcache LRU scanning and reclaim.

Pipe and socket open/close (these create and delete dentries).

13

dcache locking classes
dcache_lock protects several semi-independent cases:
dcache hash,
dcache LRU list,
inode’s dentry alias list,
dentry’s children list,
dentry’s parent,
membership on lists (hash, LRU, parent’s children, etc),

dentry statistics counters.

14

Scaling dcache_lock
Use per-dentry lock to protect all dentry properties.
Protect dentry children with d_lock too.

dcache hash, LRU list, inode dentry list protected by new

locking.

Lock ordering can be difficult, trylock helps.

15

dcache locking classes difficulties

e “Locking classes” are not independent.

1: spin_lock(&lcache | ock);

2. list _add(&dentry->d |lru, &dentry lru);
3. hlist _add(&dentry->d _hash, &hash |list);
4: spin_unl ock(&dcache | ock);

IS not the same as

spi n_| ock(&dcache I ru_I ock);

|1 st _add(&dentry->d Iru, &dentry |lru);
spi n_unl ock(&dcache | ru_| ock);

spi n_|l ock(&dcache hash | ock);

hlist add(&dentry->d _hash, &hash |ist);
spi n_unl ock(&dcache hash | ock);

QTR WNHE

e Multiple locks have ordering constraints. Trylock helps.

16

Scaling dcache_lock cont.

dcache hash locking are per hash bucket.

inode’s dentry list is locked with the inode’s lock.
dcache statistics counters are using per-CPU counters.

dcache LRU list protected with a global lock, could be made

per-zone.

17

Scaling dcache_lock cont.
e Reverse path walking (from child to parent)

We have dcache parent— >child lock ordering. Walking the other
way is tough. Finding the path from a dentry to root would
previously take dcache_lock to freeze the state of the entire
dcache tree. | use RCU to prevent parent from being freed while
dropping the child’s lock to take the parent lock. Rename lock or
seqlock/retry logic can prevent renames causing our walk to

become incorrect. This is similar to normal RCU lookups.

18

wnode_lock
Most inode operations require tnode_lock.

Except importantly dentry— >inode lookup (read(2), write(2)

etc.)

inode lookup (uncached file open, file create, and nfsd)
inode creation, and inode destruction (create, unlink)
inode dirtying, writeback, syncing

inode LRU walking and reclaim

pipe and socket open/close (these create and delete inodes).

19

inode locking classes
1node_lock protects several semi-independent cases:
iInode hash
inode LRU list
inode superblock inodes list
inode dirty list
membership on lists (hash, LRU, dirty, etc),
inode fields (1_state)
lunique
last_ino

inode counters

20

Scaling tnode_lock
Similar to approach to scale dcache_lock
Use per-inode lock to protect all inode properties.

inode hash, superblock list, LRU, dirty lists protected by new

locking.

last_ino, tunique protected by new locking.

21

Scaling :node_lock cont.
RCU free struct tnode to reduce locking, simplify lock order.
inode hash locks are per hash bucket
inode hash lookups are lock-free with RCU
icache LRU list made lazy like dcache
per-cpu inode superblock lists, per-cpu locking like files_lock.
inode statistics counters are using per-CPU counters.
per-cpu inode number allocator (Eric Dumazet)
iInode LRU list has global lock, could be made per-zone.

inode dirty list has a global lock, could be made per-superblock.

22

d_lock
Path lookup looks up each path element in turn, from dcache.
For each dentry lookup, d_lock is taken and refcount is taken.
These 3 atomic operations per path element are costly.

Scalability problem for parallel lookup of common path

elements.

eg. root dentry or cwd dentry can be effectively a global lock.

23

Scaling d_lock
Dcache lookup is already largely RCU.
Locking and refcounting required for:
blocking rename during name comparison,
ensuring persistence of dentry and dentry’s inode.

inode now RCU freed, rcu_read_lock ensures inode

persistence.

seglock can be used for atomic name comparison versus

rename.

Difficult cases (eg. fs call required), use old d_lock walk.

24

Performance results

open(2)/close(2) seems perfectly scalable with lock free
lookups.

creat(2)/unlink(2) is very scalable, in seperate directories.

Single-threaded performance is worse in some cases, better in

others.

Other benefits — eg. dentry/inode reclaim global lock.

25

close(open("path")) on independent files, different cwd

350000 T T T T T
standard
- vfs-scale
300000
-
%
O 250000
o
o
g 200000
o
o
S 150000
o
e
(@)]
S 100000
e
|_
50000
O 1o [1 [] o

20 30 40 50 60
CPUs used

Plain kernel 450 ops/s per CPU at 64 CPUs

26

Throughput ops/s per CPU

350000

300000

250000

200000

150000

100000

50000

close(open("path")) on independent files, same cwd

sfandard
vfs-scale

-

20 30 40
CPUs used

27

50

60

70

unlink(creat("path")) on independent files, different cwd

160000

sfandard

140000 L vfs-scale

120000
100000 ™

80000 h -
60000 |

40000 |

Throughput ops/s per CPU

20000

O 1 " i 1o 1 1 1 o
0 10 20 30 40 50 60

CPUs used

Plain kernel 140 ops/s per CPU at 64 CPUs

28

unlink(creat("path")) on independent files, same cwd

160000 T T T T T T
+ standard
140000 L vfs-scale
T
3 120000 *
S 100000
)
2
) 80000 F
5
£ 60000 |
(@)]
8 -
= 40000 }
|_
20000 | |
O 1 | 1 1 1 .
0 10 20 30 40 50 60

CPUs used

vis patches give lower single-CPU performance

29

total time, lower is better

1.5

0.5

Multi-process close lots of sockets

30

I
plain m—
vis-scale

0.6

Max jobs/min, higher is better

3e+06

2.5e+06

2e+06

1.5e+06

1e+06

500000

osdl reaim 7 Peter Chubb workload

vfs-scale mmm

plaiﬁ I

0.1 0.2 0.3 0.4 0.5

31

0.6

Time (s), lower is better

14

12

10

Single-threaded cached git diff

I
plain m—
vis-scale

32

0.6

Time (s), lower is better

=
o

SO P N W s~ O O N 00 ©

Multi-threaded cached git diff

|
plain m—
vis-scale mmmm

0.1 0.2 0.3 0.4 0.5 0.6

33

Current progress
Very few fundamentally global cachelines remain.
I’'m using tmpfs, ramfs, ext2/3, nfs, nfsd, autofs4.
Particularly dcache changes not audited in all filesystems.

Still stamping out bugs, doing basic performance testing.

34

Future work
e Look at single threaded performance, code simplifications
Interesting future possibilities:
e Add more cases that lock free path walk can handle.
e Further improve scalability (eg. LRU lists, inode dirty list).

e This work paves the way for NUMA aware dcache/icache
reclaim.

e Re-evaluate data structures (eg. trees instead of hash for
lookup).

35

Conclusion
VFS has scalability weak points.
CPU core and thread count continues to increase.
So the need to improve scalability is probably inevitable.
| have developed reasonable ways to improve scalability.

| am very interested in feedback, testing, alternative ideas.

Thank you

36

